Refine Your Search

Topic

Author

Affiliation

Search Results

Research Report

Unsettled Legal Issues Facing Data in Autonomous, Connected, Electric, and Shared Vehicles

2021-09-13
EPR2021019
Modern automobiles collect around 25 gigabytes of data per hour and autonomous vehicles are expected to generate more than 100 times that number. In comparison, the Apollo Guidance Computer assisting in the moon launches had only a 32-kilobtye hard disk. Without question, the breadth of in-vehicle data has opened new possibilities and challenges. The potential for accessing this data has led many entrepreneurs to claim that data is more valuable than even the vehicle itself. These intrepid data-miners seek to explore business opportunities in predictive maintenance, pay-as-you-drive features, and infrastructure services. Yet, the use of data comes with inherent challenges: accessibility, ownership, security, and privacy. Unsettled Legal Issues Facing Data in Autonomous, Connected, Electric, and Shared Vehicles examines some of the pressing questions on the minds of both industry and consumers. Who owns the data and how can it be used?
Journal Article

Design Approach for Secure Networks to Introduce Data Analytics within the Aircraft Cabin

2019-09-16
2019-01-1853
In the past, aircraft network design did not demand for information security considerations. The aircraft systems were simple, obscure, proprietary and, most importantly for security, the systems have been either physically isolated or they have been connected by directed communication links. The union of the aircraft systems thus formed a federated network. These properties are in sharp contrast with today’s system designs, which rest upon platform-based solutions with shared resources being interconnected by a massively meshed and shared communication network. The resulting connectivity and the high number of interfaces require an in-depth security analysis as the systems also provide functions that are required for the safe operation of the aircraft. This network design evolution, however, resulted in an iterative and continuous adaption of existing network solutions as these have not been developed from scratch.
Journal Article

Towards a Cyber Assurance Testbed for Heavy Vehicle Electronic Controls

2016-09-27
2016-01-8142
Cyber assurance of heavy trucks is a major concern with new designs as well as with supporting legacy systems. Many cyber security experts and analysts are used to working with traditional information technology (IT) networks and are familiar with a set of technologies that may not be directly useful in the commercial vehicle sector. To help connect security researchers to heavy trucks, a remotely accessible testbed has been prototyped for experimentation with security methodologies and techniques to evaluate and improve on existing technologies, as well as developing domain-specific technologies. The testbed relies on embedded Linux-based node controllers that can simulate the sensor inputs to various heavy vehicle electronic control units (ECUs). The node controller also monitors and affects the flow of network information between the ECUs and the vehicle communications backbone.
Technical Paper

Deep Learning Based Automotive Requirements Analysis

2023-04-11
2023-01-0864
Automotive system functionalities spread over a wide range of sub-domains ranging from non-driving related components to complex autonomous driving related components. The requirements to design and develop these components span across software, hardware, firmware, etc. elements. The successful development of these components to achieve the needs from the stockholders requires accurate understanding and traceability of the requirements of these component systems. The high-level customer requirements transformation into low level granularity requires an efficient requirement engineer. The manual understanding of the customer requirements from the requirement documents are influenced by the context and the knowledge gap of the requirement engineer in understanding and transforming the requirements.
Technical Paper

Technical Trends of the Intelligent Connected Vehicle and Development Stage Division for Freeway Traffic Control

2020-12-30
2020-01-5134
It is deemed that currently the intelligent connected vehicle (ICV) is in its early stage of development, and it will go through multiple development stages in the future to realize its final goal—autonomous driving. Based on the existing ICV researches, this paper believes that ICV can be used to improve the efficiency and safety of freeway. The current research of ICV has two main directions: one focuses on the traffic flow characteristics of vehicles with different attributes, the other is concerned with using ICV to reduce congestion. From the policies issued by countries around the world and the development plans promoted by major vehicle manufacturers, the future development trends and challenges of ICV are analyzed. ICV must overcome all the shortcomings to achieve its final goal, including insufficient hardware capabilities or excessive cost, and the degree of intelligence that needs to be improved.
Technical Paper

Research on the Development Path and Policy Recommendations of Vehicle Infrastructure Cooperation

2022-12-22
2022-01-7065
By looking into the vehicle-infrastructure cooperation (VIC) which is oriented towards intelligent, networked and integrated development, this paper analyzes and proposes the essence and development direction of Intelligent Vehicle Infrastructure Cooperation Systems (I-VICS). With an in-depth analysis of technologies of core importance to VIC and influence factors that constrain VIC development as a whole, the paper comes up with a technological route for VIC, and identifies a direction for vehicle-infrastructure cooperative development that progresses from primary to intermediate cooperation, then to advanced cooperation, and finally to full-fledged cooperation. Policy recommendations aiming at strengthening top-level design, building an integrated vehicle-infrastructure-cloud platform, expediting independence of key techs, building robust standards and regulations for VIC, enhancing workforce development as well as greater efforts at market promotion are put forward.
Technical Paper

The Operation Phase as the Currently Underestimated Phase of the (Safety and Legal) Product Lifecycle of Autonomous Vehicles for SAE L3/L4 – Lessons Learned from Existing European Operations and Development of a Deployment and Surveillance Blueprint

2023-12-29
2023-01-1906
Advanced Autonomous Vehicles (AV) for SAE Level 3 and Level 4 functions will lead to a new understanding of the operation phase in the overall product lifecycle. Regulations such as the EU Implementing Act and the German L4 Act (AFGBV) request a continuous field surveillance, the handling of critical E/E faults and software updates during operation. This is required to enhance the Operational Design Domain (ODD) during operation, offering Functions on Demand (FoD), by increasing software features within these autonomous vehicle systems over the entire digital product lifecycle, and to avoid and reduce downtime by a malfunction of the Autonomous Driving (AD) software stack.
X